
Current driven spin-wave instability triggered by the anomalous Hall effect

I. Ya. Korenblit
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

�Received 6 December 2007; revised manuscript received 28 January 2008; published 12 March 2008�

We studied the effect of strong electric current on spin waves interacting relativistically with the current. The
spin-wave spectrum is calculated at the arbitrary direction of the wave vector. It is shown that the alternating
Hall current generated by the alternating magnetic moment of the spin waves reduces the spin-wave damping.
At strong enough unpolarized dc current the damping changes sign, and the spin-wave amplitude starts to
increase exponentially fast with time. The critical current for the spin-wave instability is determined mainly by
the anomalous Hall effect, and can be much smaller than that for the spin-torque mechanism of instability.
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Current-induced switching of the magnetization or spin-
wave excitation in magnetically inhomogeneous systems,
e.g., multilayers, has received considerable attention during
the last decade.1 When a spin-polarized current passes
through a ferromagnetic layer, the electrons transfer their
spin angular momentum to the localized spins of the
ferromagnet resulting in a spin torque acting on the
magnetization.2,3 The theoretical predictions were confirmed
by several groups, the experiments being performed mainly
with trilayers of structure ferromagnet–normal-metal–
ferromagnet, in which the layer magnetization may be non-
collinear; see Ref. 1, and references therein.

It has been argued recently that polarized current can also
affect the magnetic properties of a homogeneous bulk ferro-
magnetic metal.4–7 Adding the spin torque linear in the spin
current to the Landau-Lifshitz equation of motion, one gets a
modified spin-wave �SW� spectrum, which shows a current
driven instability. In a half metal, when the density of the
minority carriers is zero, the spin current is equal to the
electric current. In this case the uniform ferromagnetic state
becomes unstable at a critical current given by the relation4,5

k · vd = �k, �1�

where k is the spin-wave wave vector, �k is the spin-wave
dispersion, and vd is the electron drift velocity, which is pro-
portional to the electric current. This “Doppler-shift” critical
current is of the order of 109 A /cm2 �Ref. 5� but, in general,
as has been shown by Tserkovnyak et al.,7 the critical current
can be strongly enhanced.

High enough current densities can excite SW excitations
in ferromagnetic layers even when the current is unpolarized,
if the source and drain contacts are nonsymmetric.8 SW ex-
citation by an unpolarized current injected into a single fer-
romagnetic film from a point contact was observed by Ji et
al.9 and considered theoretically in Refs. 10.

The original models by Slonczevski2 and Berger3 and all
subsequent considerations of current-induced SW excitation
rely on the exchange model of interaction between the itin-
erant electrons and the localized spins. In this paper we con-
centrate on the electromagnetic �relativistic� interaction of
the electron current with the field of the SW, which does not
preserve the total spin. We show that in ferromagnetic con-
ductors with large anomalous Hall effect this interaction can
lead to current-induced SW instability at critical unpolarized
current of the same order or even smaller than that in the

exchange interaction models. Unlike the exchange coupling
of itinerant electrons with the SW, which is effective only in
the vicinity of the interface between normal and ferromag-
netic layers,3 the above relativistic interaction acts also in the
bulk of the ferromagnet. Therefore, the current-induced SW
instability caused by the Hall effect is not restricted to a
layered structure of the ferromagnet.

The physical mechanism for SW generation via the rela-
tivistic interaction is as follows. Suppose for simplicity that
an electric current j0 is driven parallel to the magnetization
M0. Consider a spin wave propagating along M0. The oscil-
lating magnetic moment and magnetic field of the spin wave
lie in the plane perpendicular to j0 and M0. This gives rise to
an alternating Hall current perpendicular to M0, which in
turn creates a magnetic field amplifying the field of the wave.
If the electric field is strong enough, the amplification will
exceed the damping due to eddy currents. If there are no
other sources of damping, the spin-wave system becomes
unstable at such field. We show in this paper that the insta-
bility is not restricted to the above simple geometry. It takes
place at any mutual orientation of j0 and M0.

In ferromagnetic metals the main contribution to the Hall
current comes from the anomalous Hall effect caused by the
spin-orbit coupling in the metal. Since the anomalous Hall
constant is by orders of magnitude larger than the normal
one, the critical current for SW amplifying can be relatively
small.

The full set of equations, which describes SW in a con-
ducting media interacting with an electric current, consists of
the Landau-Lifshitz equation and of the Maxwell’s equa-
tions. The Landau-Lifshitz equation for the precession of the
magnetic moment is11

�m

�t
= �M0 � Heff +

1

�2
Heff −

1

�1M0
2M0 � �M0 � Heff� . �2�

Here m is the �small� transverse alternative part of the mag-
netization m�M0, � is the gyromagnetic ratio, �1 and �2 are
phenomenological SW relaxation times, and Heff is the effec-
tive magnetic field given by

Heff = h + � D

�M0
�2 −

m0 · H0

M0
− K�m0 · n�2�m + Kn�n · m� ,

�3�

where h is the alternative part of the magnetic field, D is the
stiffness constant of the SW, H0 is the external magnetic
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field, which in restricted samples includes also the demagne-
tizing fields, n and m0 are unit vectors directed along the
anisotropy axis and the magnetization, respectively, and K is
the dimensionless anisotropy constant.

The Maxwell equations are

� � h =
4�

c
j ,

� � e = −
1

c

�b

�t
,

� · b = 0. �4�

Here the alternating magnetic induction is b=h+4�m, e is
the alternating electric field, c is the light velocity, and j is
the alternating electric current given by12

j = �e + ��RBj0 � b + RMj0 � m� , �5�

where RB and RM are the ordinary and anomalous Hall coef-
ficients, respectively, � is the conductivity, and j0 is the dc
part of the electric current density. We neglected in Eqs. �4�
the displacement current, since for conductors considered
here the inequality ��� always holds. We skipped in Eq.
�5� a small term of order ��RBB0+RMM0��1. The SW
frequences considered in the paper are of order of
�109−1010� s−1, i.e., much smaller than all typical electron
relaxation frequencies in a ferromagnetic metal. Therefore,
we used below the dc values of the transport coefficients.

The Maxwell equations, with the current from Eq. �5�,
relate the Fourier transforms of h and m as

h = − 4���0k2 + i
2

	2 �k · vb − ���−1��0�k · m�k

− i
2

	2 �k · m�vm − i
2

	2 �� − k · v�m� . �6�

Here �0=4��M0, the skin penetration depth 	 at frequency
�0 is given by 	= �c2 /2���0�1/2, and the effective velocities
vb, vm, and v are related to the Hall coefficients by

vb = RBcj0 � vd, vm =
RMcj0

4�
, v = vb + vm. �7�

It is supposed that 	 is much larger than the electron mean
free path.

The Landau-Lifshitz equation yield another relation be-
tween h and m. When H0 and M0 are parallel and directed
along the anisotropy axis, this relation reads

�
k − � − i�
k�m+ = �M0h+�1 − i�� ,

�
k + � + i�
k�m− = �M0h−�1 + i�� . �8�

Here

� =
1

�M0
� 1

�1
+

1

�2
� , �9�

m�=mx� imy, h�=hx� ihy, while the axis z is along the
magnetization. The frequency 
k is given by


k = ��H0 + Ha� + Dk2, �10�

where Ha is the anisotropy field Ha=KM0.
Equations �6� and �8� give the dispersion relation for SW

in an external electric field. We consider in what follows
wave vectors k, which are larger than 	−1: k	1. Then to
leading order in the small parameter 1 /k2	2 one obtains

�k
2�j0� = 
k
1k +

2�k�0�
	2k2 �k � vm� · m0 − i

�� 2

	2k2 �
1k + 
k cos2��	�k�0� − k · v


+ ��k�0��2
k + �0 sin2���
− i

2

	2k4
kk · m0	�vm · k��m0 · k� − k2vm · m0
 .

�11�

Here � is the angle between the wave vector k and
the magnetization, 
1k=
k+�0 sin2�, and �k�0�
��k��=0�=�
k
1k. In the absence of the current j0, this
equation gives the usual spectrum of SW decaying due to
Landau-Lifshitz-Gilbert damping �, and due to the eddy cur-
rents. The last decay is proportional to 1 /k2	2.

In what follows we consider such wave vectors that the
contribution to the SW damping from the last term in Eq.
�11� is equal to zero. This happens specifically, if k is along
or perpendicular to the magnetization, or at any � provided k
is along the current. Equation �11� then yields

Re �k�j0� = �
k
1k +
�k � vm� · m0

	2k2 ,

Im �k�j0� = − ��k + �k���k�0� −
�k

�k + �k
k · v� . �12�

Here

�k =

1k + 
k cos2�

k2	2�
k
1k

,

�k =
�

2�
k
1k

�2
k + �0 sin2�� . �13�

Equation �12� is our main result. It shows that Im � changes
sign at a critical velocity vc given by the relation

k · vc = �1 +
�k

�k
��k�0� . �14�

At higher effective velocities, i.e., at higher currents the am-
plitude of spin waves, with k satisfying Eq. �14�, increases
exponentially with time.

When RM /4� is smaller than RB, i.e., v=vb=vd, the SW
instability condition �14� resembles those obtained in
Refs. 4–7 for SW instability in half-metals triggered by spin-
transfer torques; see Eq. �1�. However, RM in ferromagnetic
conductors is usually by many orders of magnitude larger
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than RB. We have, therefore, vvmvd, and the critical cur-
rent for the instability considered here is much smaller than
the critical current given by Eq. �1�.

Measurements13 performed on Fe, Co, Ni, and Gd films
with the thickness of 1 �m show that in pure metals, with
the resistivity �= �10−4−10−6� 
 cm, the anomalous Hall
conductivity �H is of the order 103 �
 cm�−1. Thus, for met-
als with the resistivity �= �10−4−10−5� 
 cm, and with
M0103 G, one gets RM = �10−8−10−10� 
 cm /G. The
values of RM for Ni films, which follow from the data ob-
tained in Ref. 14, also fall in this region. It follows then from
Eq. �7� that the effective velocity vm is of the order
vm= �10−1−10−3�j0. Here j0 is in A /cm2, and vm in cm/s.
Note that the typical drift velocity is of the order
10−4j0 cm /s.5

The real part of the SW frequency �12� also acquires a
term linear in the current, which is solely caused by the
anomalous Hall effect. The frequency of spin waves, with k
nonparallel to the magnetization and to the current, is modi-
fied by the current. The current increases or decreases the
frequency, depending on the direction of k.

When the wave vector k and the current are along the
magnetization, the critical velocity is given by

vc�k� = �Dk +
��H0 + Ha�

k
��1 +

�

2
	2k2� . �15�

vc�k� is minimal at k=k0 given by

k0
2 =

1

6�	2 	− �2 + ��� + �4 + 28�� + ����2
 , �16�

where �=��H0+Ha�	2 /D.
When the damping � is small, ��1 /�, the critical veloc-

ity coincides with the phase velocity of the SW,12 and k0 is
given by k0= 	��H0+Ha� /D
1/2, vc�k0� being equal to

vc�k0� = 2�D��H0 + Ha� . �17�

With typical values D= �0.1−0.05� cm2 /s and ��H0+Ha�
=2�109 s−1, one gets vc�k0�3�104 cm /s. Thus,
the minimal critical current density is jc=4�vc�k0� /RMc
�3�105−3�107� A /cm2. This value of jc is by several
orders of magnitude smaller than that obtained in Refs. 5 and
6.

The wave vector k0 decreases with increase of �. If � is
large, �1 /�, it follows from Eq. �16� that k0 does not
depend on D and �H0, and is equal to k0= �2 /�	2�1/2. The
critical velocity in this case is

vc�k0� = 	��H0 + Ha��2� , �18�

increasing linearly with the external magnetic field.
With �=105 
−1 cm−1 and �0=1011 s−1, one gets

	=10−4 cm. Then, with the above values of D and
��H0+Ha� one finds that the inequality �1 /� is fulfilled, if
� is larger than 10−2. The dependence of the minimal critical
velocity on � at different values of the conductivity is shown
in Fig. 1.

If k is parallel to the current and perpendicular to the
magnetization, Eqs. �14� and �13� yield

vc�k� =
1

k
�
k�
k + �0��1 +

�	2k2

2

2
k + �0


k + �0
� . �19�

Usually the inequality �H0��0 holds. Then, at small �,
��1 /�, the minimal critical velocity is

vc�k0� = �D�0  105 cm/s, �20�

while the minimal critical current is of the order
�106−108� A /cm2. As before, the critical velocity increases
with increase of �. When � is large, and satisfies the inequal-
ity �1 /�, the minimal critical velocity is

vc�k0� = 2	���H0 + Ha��0� . �21�

The critical velocity and the critical current can be consider-
ably smaller than the above values, if the ferromagnet is in a
state close to an orientational phase transition caused by an
external magnetic field. We consider now the instability con-
dition in several different arrangements of this type. In all
cases we suppose that k is along the dc current, since we are
interested in the minimal critical current.

First, let in a uniaxial ferromagnet the external magnetic
field is aligned perpendicular to the easy axis, and H0 is
larger but close to Ha. Then, the magnetization points along
H0. Repeating the previous calculation for this orientation of
the field, one gets for k and j0 along the magnetization

vc�k� =
�k

k
�1 +

�	2k2

2
� , �22�

where11

�k = �	Dk2 + ��H0 − Ha�
�Dk2 + �H0� . �23�

At small �
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FIG. 1. Dependence of the minimal critical velocity on � at
different conductivities �= �1,2 ,5 ,10��104 �
 cm�−1, with pa-
rameters D=0.1 cm2 /s, H0+Ha=100 Oe. Both k and j0 are along
the magnetization.
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� �
D

��H0 − Ha�	2 , �24�

and at H0−Ha�Ha, the critical velocity is minimum at a
wave vector, given by

k0 = � �2Ha�H0 − Ha�
D�D + �	2�Ha��1/4

, �25�

and vc�k0� is

vc�k0� = �D�Ha, �26�

which is considerably smaller than the critical velocity �17�.
At large �, �D /��H0−Ha�	2, the critical velocity is equal
to

vc = �	�2�Ha�H0 − Ha� . �27�

Note that if �H0−Ha� /Ha is small, the inequalities �24� and
k0

2	21 are fulfilled whenever � is smaller than 1, i.e., the
SW damping in this case almost does not affect the critical
current.

Suppose now that the ferromagnet is in a metastable state,
with the field H0 smaller than Ha and opposite in direction
to the magnetization. It follows then from Eq. �3� that
in Eq. �15� and in all subsequent equations for vc the
field H0 should be replaced by −H0. Hence, when H0
approaches Ha the critical wave vector and vc tend to
zero. k0 is restricted from below by the inequality k0

2	21.
This gives for small damping �, which satisfies the inequal-
ity �24�: ��Ha−H0�D	−2, vc2D /	103 cm /s, and
jc104 A /cm2. This implies that a relatively small current
of order or larger than �3−5��104 A /cm2 can drive the
magnetization switching at magnetic fields smaller than Ha,
if the current flows along the magnetization. Note that, as in
the previous case, the inequality �24� is equivalent to the
condition ��1.

Finally, consider thin films, with kd�1; d is the film
width. The SW spectrum in this case at different directions of
the magnetization and external magnetic field was derived in
many papers; see, e.g., Refs. 15. We consider the case when
the external magnetic field is perpendicular to the film plane
and larger than 4�M0+Hs−Ha, where Ha is the volume an-
isotropy field, the easy axis being in a symmetry direction of
the film, and Hs is the surface anisotropy field. Then, the
magnetization is also perpendicular to the film, and the spec-
trum of SW with k in the plane is

�k = �	��H̃ + 2�M0kd� + Dk2
	�H̃ + Dk2
 , �28�

where H̃=H0+Ha−Hs−4�M0.
As argued above, the damping can be neglected if the

ferromagnet is in the vicinity of the phase transition. Then
the critical velocity is equal to the SW phase velocity, and is

minimal at k0=��H̃ /D, while H̃ should be larger than
D /�	2. The minimal critical velocity is given by

vc�k0� = �4�H̃D + �0d��H̃D�1/2. �29�

The above inequalities yield that vc�k0� is restricted from
below as vc���0Dd /	104 cm /s. Hence, the critical cur-
rent is larger than �105−107� A /cm2.

In conclusion, we have calculated the effect of an electric
current on the SW spectrum in a ferromagnetic metal. We
have shown that the ordinary and anomalous Hall currents
lead to the reduction of the SW damping, caused by the eddy
currents. At sufficiently strong currents the damping changes
sign, and a SW instability develops. The critical current of
the instability is determined mainly by the anomalous Hall
effect, and may be much smaller than the critical current for
SW excitation with spin-transfer torques.
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